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Abstract
Starting from the spin-current-density-functional theory for electronic systems,
we extend the formulation to include spin–orbit coupling. Particular attention
is devoted to the symmetry of the problem. Here we show that the exchange-
correlation energy functional is invariant by the U(1)em × SU(2)spin gauge
transformations. We give the transformation laws of the paramagnetic current
and also the paramagnetic spin current density by the U(1)em × SU(2)spin

gauge transformations. For the case where the spin–orbit coupling is taken
into account, we generalize the equations of continuity satisfied by the current
density and the spin current density, derived by Vignale and Rasolt.

PACS numbers: 71.15.Mb, 31.15.Ew

1. Introduction

The density functional theory (DFT) is a theory of electronic structure [1–3] which uses the
electron density distribution n(r) as a basic variable, instead of the many-electron wavefunction
�(r1, . . . . , rN). For systems subject to external magnetic fields, currents are induced. It is
then practical to use a DFT which employs the current density. The basic theory for this
current-density-functional theory (CDFT) has been developed by Vignale and Rasolt [4] (in
the following abbreviated as VR). As shown by VR the basic variables are now the electron
density n(r) and the paramagnetic current density jp(r) (see the next section for definitions).
The total energy E(n, jp) is now a functional of the n, jp densities. The VR formalism of the
CDFT can be summarized as follows:

(i) They have demonstrated the gauge invariance of the exchange-correlation (xc) energy
functional by the U(1)em gauge transformation. This leads to a formulation of the theory
in terms of the U(1)em gauge invariant vorticity vector ν = ∇ × ( jp/n).

(ii) They have given the specific form of the one-particle Kohn–Sham (KS) equation which
is U(1)em gauge invariant.

0305-4470/03/4811929+08$30.00 © 2003 IOP Publishing Ltd Printed in the UK 11929
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Extending these findings of CDFT to include the spin-degrees of freedom, VR formulate
the spin current DFT (SCDFT) [5]. For the general case where the electrons are subjected to
a magnetic field with an arbitrary direction, the authors have shown that one has to add to the
previous n, jp densities two other quantities for a complete description of the system: the spin
vector density s(r) and the paramagnetic spin current vector densities Jpλ=1,2,3(r). Hence,
one should consider the total energy as a functional of the set of densities (n, jp, s, Jpλ), i.e.,
E(n, jp, s, Jpλ).

The main purpose of the present paper is to generalize the VR formalism of SCDFT by
including the spin–orbit coupling (SOC). In section 2, it will be shown how to include such a
relativistic effect from the usual SCDFT. We shall give the many-body Hamiltonian, then we
will derive the corresponding Pauli-like one-electron equation. The second part of section 2 is
devoted to the symmetry aspects of the problem in the presence of the SOC. Taking stock of the
study performed in [6], it will be shown that the theory of SCDFT with SOC exhibits a local
U(1)em × SU(2)spin gauge invariance which leads to a gauge invariant xc energy functional.
We shall present in section 3 the U(1)em ×SU(2)spin gauge transformation laws of the current
densities jp and Jpλ. The transformation laws given by equations (6.14) in [5] and also
equations (6.4) in [8] are only valid for an infinitesimal local spin rotation [9]; here the
generalized expressions will be derived for a finite local spin transformation. These expressions
reduce to those obtained by VR for the particular case of an infinitesimal local spin rotation.
Finally, in section 4, we will derive the equation of continuity satisfied by the paramagnetic
current density jp and also the modified equation of continuity satisfied by the paramagnetic
spin current density Jpλ. Such equations contain terms arising from SOC. A summary of the
main results will be given in section 5.

2. Spin–orbit coupling in the spin current DFT

In this section, we show explicitly how the ground-state (gs) energy functional of an N-electron
system, subjected to a static electromagnetic field (E = −∇V, B = ∇ × A), can be written
in terms of the SOC term. In the rest of the paper, the spin indices are labelled by σ, σ ′. The
Hamiltonian of SCDFT is given by [5]

Hop =
N∑

j=1

1

2m

[
pj +

e

c
A(rj )

]2
+

1

2

N∑
i,j
i �=j

e2

|ri − rj |

+
∫

d3r nop(r)V (r) +
eh̄

2mc

∫
d3r sop(r) · B (1)

where rj and pj = h̄
i ∇j are the coordinate and momentum operators of the jth electron. The

particle density is defined in terms of the field operators �σ(r) by

n(r) = 〈nop(r)〉 =
∑

σ

〈
�+

σ (r)�σ (r)
〉

(2)

where 〈〉 means the gs expectation value. The spin vector density is

s(r) =
∑
σσ ′

〈
�+

σ (r)〈σ |σ|σ ′〉�σ
′ (r)

〉
(3)

where σ = (σx, σy, σz) stands for the vector of 2 × 2 Pauli matrices. Generally, the many-body
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Hamiltonian is written in terms of the paramagnetic current density as

Hop =
N∑

j=1

1

2m
p2

j +
1

2

N∑
i,j
i �=j

e2

|ri − rj | +
e

c

∫
d3r jopp (r) · A(r)

+
e2

2mc2

∫
d3r nop(r)A2(r) +

∫
d3r V (r)nop(r) +

eh̄

2mc

∫
d3r sop(r) · B (4)

where the paramagnetic current density, jp(r), is defined as the gs expectation value of the
operator jopp (r) = (h̄/2mi)

∑
σ

[
�+

σ (r)(∇�σ(r)) − (∇�+
σ (r)

)
�σ(r)

]
.

We now state the VR formalism by including the SOC term. The SOC being a relativistic
effect, one formally should start with the Dirac equation. To obtain the correct SOC term, one
has to expand the Dirac equation up to the second order in 1/m by using the well-known Foldy–
Wouthuyson scheme. To introduce the SOC term in the nonrelativistic Hamiltonian one can
follow the scheme proposed in [7], which consists in simply substituting in the kinetic energy
term, equation (1), the canonical momentum operator Π = p + (e/c)A by Π = p + (e/c)A +
(eh̄/4mc2)(σ × E). Doing this substitution the Hamiltonian can then be written as

Hop =
N∑

j=1

1

2m

[
pj +

e

c
A(rj ) +

eh̄

4mc2
(σ × E)

]2

+
1

2

N∑
i,j
i �=j

e2

|ri − rj |

×
∫

d3r V (r)nop(r) +
eh̄

2mc

∫
d3r sop(r) · B. (5)

Note that all relativistic terms different from the spin–orbit coupling are ignored. In the
subsequent analysis, it turns out to be more convenient to rewrite the term (eh̄/4mc2)(σ × E)

as

eh̄

4mc2
(σ × E) = e

c

3∑
λ=1

Aλσλ (6)

where the set of three vector fields (A1, A2, A3) is defined through the above equation from
which we get a relationship between Aλ=1,2,3 and the external electric field E:

Aλ(r) = h̄

4mc

3∑
µ=1

3∑
ν=1

εµλνeµEν Eλ = 2mc

h̄

3∑
µ=1

3∑
ν=1

ελµν(eµ · Aν) (7)

where eµ denotes the unit vector of the physical space and Eν is the νth component of the
external electric field E. Note that the term appearing on the right-hand side of equation (6) is
just another way of writing the spin–orbit term. This form was adopted in [6] and is convenient
for writing the equations of continuity as will be shown in section 4.

Let us now write down the total energy functional of the system. Following the Kohn–
Sham scheme [2], we assume that the true densities are reproducible from orbitals of a
noninteracting system [5]. Let |�〉 stand for the ground-state wavefunction of the latter
fictitious noninteracting N-electron system. By definition |�〉 is a Slater determinant of
N-one-electron two-spinor state |ψj 〉. Thus, the total energy functional is given by

E =
N∑

j=1

〈ψj | 1

2m

[
p +

e

c
A +

e

c

3∑
λ=1

Aλσλ

]2

|ψj 〉 + EHartree

+
∫

d3r V (r)n(r) +
eh̄

2mc

∫
d3r s(r) · B + Exc (8)
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where EHartree and Exc are the Hartree and the xc energy functionals, respectively. To show
explicitly the functional dependence of the total energy E on the various densities, we should
expand the first term on the right-hand side of the above equation. Since the SOC is taken into
account, one has to add the paramagnetic spin current density Jpλ=1,2,3(r) [5], which is the gs
expectation value of Jop

pλ(r) = (h̄/2mi)
∑

σσ
′
{
�+

σ (∇�σ ′)− (∇�+
σ

)
�σ ′

}〈σ |σλ|σ ′〉. Therefore
the total energy can be written in the form

E(n, jp, s, Jpλ) = Ts(n, jp, s, Jpλ) + EHartree + Exc(n, jp, s, Jpλ)

+
∫

d3r nV +
e

c

∫
d3r jp · A +

e

c

3∑
λ=1

∫
d3r Jpλ · Aλ

+
e2

2mc2

∫
d3r nA2 +

e2

2mc2

3∑
λ=1

∫
d3r nA2

λ

+
e2

mc2

3∑
λ=1

∫
d3r A · Aλsλ +

eh̄

2mc

∫
d3r s · B (9)

where Ts = ∑N
j=1〈ψj | 1

2m

(
h̄
i ∇

)2|ψj 〉 is the noninteracting kinetic energy functional and sλ(r)
is the λth component of the spin density s(r). In equation (9), we emphasize the fact that
Ts, Exc and E depend now on the set of densities (n, jp, s, Jpλ).

Now, one can derive the Pauli-like equation by the minimization of the total energy
functional with respect to |ψj 〉. It turns out to be more convenient not to choose equation (9),
but rather to choose equation (8) for the variational procedure. This yields the following
equation:
 1

2m

(
p +

e

c
A +

e

c

3∑
λ=1

Aλσλ

)2

+ U eff +
e

2mc

(
p ·

(
Axc +

3∑
λ=1

Axcλσλ

)

+

(
Axc +

3∑
λ=1

Axcλσλ

)
· p

)]
|ψj 〉 = εj |ψj 〉 (10)

where the spin-dependent effective scalar potential, U eff, is given by

U eff = e2
∫

n(r
′
)

|r − r′ | d3r
′
+ V + Vxc + (V + Vxc) · σ (11)

with V = (eh̄/2mc)B. Moreover, the various xc potentials are defined as functional derivatives
of Exc(n, jp, s, Jpλ), i.e.

Vxc = δExc(n, jp, s, Jpλ)

δn
(12)

Vxc = δExc(n, jp, s, Jpλ)

δs
(13)

e

c
Axc = δExc(n, jp, s, Jpλ)

δjp
(14)

e

c
Axcλ = δExc(n, jp, s, Jpλ)

δJpλ

λ = 1, 2, 3. (15)
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Finally, equation (10) can also be rewritten in the form[
1

2m

(
p +

e

c
Aeff

)2
+ U eff +

e2

2mc2

(
A2 +

3∑
λ=1

A2
λ + 2

3∑
λ=1

A · Aλσλ − (Aeff)2

) ]
|ψj 〉

= εj |ψj 〉. (16)

Here the spin-dependent effective vector potential Aeff is defined as

Aeff = A + Axc +
3∑

λ=1

(Aλ + Axcλ)σλ. (17)

Equation (16) is similar to equation (6.4) of [5] obtained by VR in SCDFT for the case where
the magnetic field has an arbitrary direction. However, in [5] the terms depending on Aλ=1,2,3

are not present. In fact these potential vectors, introduced in [5] (equation (6.3b)), were merely
regarded as a mathematical convenience and were set equal to zero. In the present formalism,
it is shown that these terms describe, in fact, the spin–orbit coupling and are related to the
external electric field.

In the remainder of this section, we propose to focus on the gauge symmetry of SCDFT in
the presence of the SOC term. This symmetry will be investigated in a somewhat different way,
along the lines of [6]. Before proceeding, it is useful to recall that VR used the gauge symmetry
in the SCDFT for the case where the external magnetic field has a constant ẑ direction. As
stated in the introduction, they proved the covariance of the one-electron equation and found
the important result that Exc(n, jp) is gauge invariant. When generalizing SCDFT to the case
where the magnetic field is pointing in an arbitrary direction, VR introduced a more general
symmetry which consists of a combined spin rotation and gauge transformation. They found
that Exc(n, jp, s, Jpλ) is invariant by such a symmetry. In the following, we consider the latter
symmetry in our analysis of the SCDFT with SOC. Before going further, one may point out
that the transformation given by equations (6.11) and (6.12) in [5] has not been explicitly
recognized as being the time-independent U(1)em × SU(2)spin gauge transformation. Let
us briefly recall some basics concerning the U(1)em and SU(2)spin transformation. In the
following, any transformed quantity will be primed.

The U(1)em acts on the wavefunction |ψj 〉 by local phase transformation

U(1)em : |ψj 〉 →|ψ ′
j 〉 = exp

[ ie

h̄c

0(r)

]
|ψj 〉

(18)
A → A′ = A − ∇
0(r)

where 
0(r) is an arbitrary real-valued function and the non-Abelian SU(2)spin transformation
is defined as

SU(2)spin : |ψj 〉 →|ψ ′
j 〉 = US(r) |ψj 〉. (19)

Here US(r) = exp[(ie/h̄c)
(r) · σ] is a unitary local operator, with 
(r) an arbitrary position-
dependent vector. Recall that the well-known expansion of the US(r) is

US(r) = I cos(θ/2) + i(u · σ) sin(θ/2) (20)

with θ(r) = (2e/h̄c) |Λ(r)| and u = Λ(r)/|Λ(r)| a unit vector of arbitrary direction.
Let us now turn to the symmetry of SCDFT with SOC. Consider the expression of the

total energy given by equation (8). Under the gauge transformations (equations (18) and (19)),
the first term, namely

∑N
j=1〈ψj | 1

2m

[
p + e

c
A(r) + e

c

∑3
λ=1 Aλ(r)σλ

]2 |ψj 〉, can be shown to be

invariant, providing the term e
c

∑3
λ=1 Aλσλ transforms according to the law

e

c

3∑
λ=1

Aλσλ → e

c

3∑
λ=1

A′
λσλ = e

c

3∑
λ=1

Aλ

(
USσλU

−1
S

) − ih̄
(
US∇U−1

S

)
. (21)
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From equation (21), one obtains the transformation law for Aλ:

e

c
A′

λ =
3∑

µ=1

Rλµ(θ)

[
e

c
Aµ + i

h̄

2
Trσ

(
σµU−1

S ∇US

)]
(22)

where Trσ denotes the trace over the spin, and Rλµ(θ) are the matrix elements of the rotation
operator R in physical space. Furthermore, the potential V(r) and the density s(r) experience
the same rotation R under the gauge transformations [6]:

SU(2)spin : Vλ → V ′
λ =

3∑
µ=1

Rλµ(θ)Vµ (23)

sλ → s ′
λ =

3∑
µ=1

Rλµ(θ)sµ. (24)

Note that since V · s = V′ · s′, the fourth term on the right-hand side of equation (8) is gauge
invariant. Moreover, the second and third terms are known to be invariant. Consequently,
the fifth term (the xc energy Exc) of equation (8) is gauge invariant since the total energy is
invariant. Hence, the xc energy functional, Exc, is invariant by U(1)em × SU(2)spin gauge
transformations. It is important to stress that, if the vectors Aλ=1,2,3 vanish (no spin–orbit
coupling), the gauge symmetry (SU(2)spin) of the present formalism will be automatically
broken. Indeed, this can be seen from equation (21). The transformation law of the vector
e
c

∑3
λ=1 Aλσλ is nontrivial; it contains an additional inhomogeneous term ih̄

(
US∇U−1

S

)
(see

also equation (2.16) in [6]). In fact this particular term which arises from the action of
the operator momentum p = h̄

i ∇ on the wavefunction in the expression of the total energy

functional (8), cannot be eliminated in the absence of the term e
c

∑3
λ=1 Aλσλ. This important

remark means that imposing a U(1)em×SU(2)spin gauge symmetry on the theory automatically
induces the inclusion of the spin–orbit coupling. This result agrees with that reported by
Fröhlich and Studer in [6]. Indeed, they showed that the one-particle quantum mechanics
based on the Pauli equation exhibits a local U(1)em × SU(2)spin gauge invariance. They have
established that the SU(2)spin gauge fields consist of terms describing spin–orbit coupling.

As a final point related to U(1)em × SU(2)spin gauge symmetry, we briefly comment
on the covariance of equation (16). Since the energy functional (8) is gauge invariant,
the corresponding one-electron equation, equation (16), is automatically form invariant
(covariant). Indeed, the covariance of equation (16) can be explicitly shown. We shall not
make the derivation here but briefly indicate the main point. In order to achieve the derivation,
one has to find the gauge transformation laws of the various xc potentials, Vxc, Vxc, Axc and
Axcλ. This point can be carried out by using the invariance of the xc energy functional, i.e.

Exc(n
′, j′p, s′, J′

pλ) = Exc(n, jp, s, Jpλ). (25)

These transformation laws can then be obtained by differentiating both sides of equation (25)
with respect to n, jp, s and Jpλ and invoking the definitions of equations (12)–(15). Finally,
note that in order to differentiate equation (25), we need to obtain the gauge transformation
laws of the current densities jp and Jpλ. This will be presented in the next section.

3. The gauge transformation laws of the current densities

It should be noted that the gauge transformation laws given by equations (6.14) in [5] and also
equations (6.4) in [8] are only valid for an infinitesimal local spin rotation [9]. In the following
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we briefly describe how to generalize the result to a finite transformation. The paramagnetic
current density jp is calculated self-consistently from the N lowest one-particle eigenfunctions
as follows (see equation (16)):

jp(r) = h̄

2m i

N∑
j=1

∑
σ=±

[ψ∗
j (r, σ )∇ψj(r, σ ) − ψj(r, σ )∇ψ∗

j (r, σ )] (26)

where ψj(r, σ ) denotes a component of the two-spinor |ψj 〉. Under a local U(1)em×SU(2)spin

gauge transformation, ψj(r, σ ) transforms according to the law

ψj(r, σ ) → ψ ′
j (r, σ ) =

[
exp

ie

h̄c

0(r)

] ∑
σ ′=±

〈σ |US |σ ′〉ψj(r, σ ′). (27)

We recall that US = exp[(ie/h̄c)
(r) · σ]. Now upon inverting equation (27) and inserting
into equation (26), one thus obtains after some straightforward calculations the following
result for the transformed paramagnetic current density:

jp → j′p = jp +
e

mc
n∇
0 − i

h̄

2m

3∑
µ=1

sµ Trσ
(
σµU−1

S ∇US

)
(28)

and for the paramagnetic spin current vector density

Jpλ → J′
pλ =

3∑
µ=1

Rλµ(θ)

[
Jpµ +

e

mc
sµ∇
0 − i

h̄

2m
n Trσ

(
σµU−1

S ∇US

)]
. (29)

It may easily be checked that for an infinitesimal SU(2)spin transformation where the operator
US can be written as

[
I + i

2θ(u · σ)
]
, the above general equations, (28) and (29), reduce to

equations (6.14) of [5].

4. The equations of continuity

In the previous section we derived the transformation laws of the paramagnetic current densities
jp and Jpλ under the U(1)em × SU(2)spin gauge transformations. In [5] , it is shown that jp
satisfies an equation of continuity and Jpλ obeys a modified equation of continuity (see
equations (6.8a) and (6.8b) of [5]). Since these equations were derived in the absence of the
SOC vectors Aλ, we propose therefore to generalize the result in the case where these vectors
are present in the Hamiltonian. From the many-body Hamiltonian (5), we obtain the following
exact equation for the paramagnetic current density jp:

∇ ·
[

jp +
e

mc
nA +

e

mc

3∑
λ=1

Aλsλ

]
= 0 (30)

and one obtains for the paramagnetic spin current density Jpλ=1,2,3

∇ ·
[
Jpλ +

e

mc
sλA +

e

mc
nAλ

]
= 2

h̄
[V × s]λ +

2e

h̄c

∑
µ,ν

ελµνAµ ·
[
Jpν +

e

mc
Asν

]
(31)

where we recall that V = (eh̄/2mc)B. As can be seen from the above equations, the vector
Aλ enters in a linear manner. However, one notes the presence of additional SOC terms on
the right-hand side of equation (31). Equations (30) and (31) are general and indeed reduce to
those obtained by VR for vanishing SOC term.

As a final point related to the continuity equations, let us show that the various xc potentials
Vxc, Axc and Axcλ=1,2,3 defined respectively by equations (13)–(15) satisfy exact equations.
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For that, using the one-electron equation (equation (16)), one can obtain a set of two equations
of continuity satisfied by the current densities jp and Jpλ. These current densities are now
calculated from the N lowest-lying one-electron wavefunctions

∇ ·
[

jp +
e

mc
[A + Axc]n +

e

mc

3∑
λ=1

[Aλ + Axcλ]sλ

]
= 0 (32)

and

∇ · Jpλ +
e

mc
∇ · [(A + Axc)sλ + (Aλ + Axcλ)n]

= 2

h̄
[(V + Vxc) × s]λ +

2e

h̄c

∑
µ,ν

ελµν

[
(Aµ + Axcµ) · Jpν +

e

mc
A · Aµsν

]
. (33)

By requiring that the above two equations be compatible with equations (30) and (31), one
obtains exact conditions on the xc potentials. These ‘compatibility equations’ are identical to
those derived by VR (see equations (6.10a) and (6.10b) in [5]).

5. Summary

In this work, it has been explicitly shown how to include the spin–orbit coupling in the
spin-current-density-functional theory. We have shown that the gauge transformations
U(1)em × SU(2)spin are a symmetry of the problem. We have pointed out the necessity
of including, in the formalism, the spin–orbit coupling in order to satisfy the full gauge
invariance of the theory. The transformation laws of the currents under the finite local gauge
transformations U(1)em × SU(2)spin have been given. These transformation laws reduce to
those found for an infinitesimal transformation. Finally, the equations of continuity have been
generalized to include the spin–orbit coupling.
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